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Dosimetry deals with methods for the quantitative de-
termination of absorbed dose in a given medium by 

directly or indirectly ionizing radiation.[1] The success or 
failure of radiation therapy treatments depends upon the 
accuracy with which the dose prescription is fulfilled. For 
many diseases, the outcome of the treatment depends 
upon the dose being delivered to an accuracy of +3%–4% 
(one standard deviation).[2, 3] Some authors argued that me-
tallic foreign bodies in irradiated individuals do not alter 

the tissue-adjusted irradiation by any measurable manner.
Others stress the impact of implants on the route of the 
central beam of the irradiation source. It points to a quanti-
tatively noteworthy deviation of X-rays following the colli-
sion of irradiation and implants, resulting in scattering radi-
ation effects on tissues beyond the threshold of biological 
compensation.[4-7] Clinical studies usually address the risk 
of implant failures in irradiated jaws[6] and human studies 
on dental implants exposed to therapeutic irradiation are 

Objectives: The aim of this study was to evaluate the effect of a metal implant on the absorbed dose in a homoge-
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and 30x30x2 cm in size. The entrance window to the phantom was 1 mm from the center of the chamber with a 0.7-cm 
radius. The set-up was irradiated for 30 seconds using a Cobalt-60 unit at a Source to Surface Distance (SSD) of 80 cm. 
An electrometer produced by Wellhofer calibrated with the chamber was used to record the absorbed dose (mGy) in 
samples with the implant and without, in position at field sizes of 5x5 cm2 and 10x10 cm2. Depths of 1.7 cm, 2.7 cm, 3.7 
cm, and 4.7 cm were used for each measurement.
Results: There was a greater variation in dose measured at higher depth (greater than 5 cm) with the 1-mm implant 
in the 10x10 cm2 field. The absorbed dose measured decreased as the depth of the implant increased. Also, the dose 
measured for the 1-mm implant was within the recommended ±5% accuracy, except at a depth greater than 5 cm. 
However, for the 1.5-mm and 2-mm implants, deviations were higher at almost all depths. There was an increase in dose 
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casuistic.[5] The presence of a high-Z inhomogeneity in an 
irradiated water phantom or patient results in attenuation 
of the radiation through the inhomogeneity as well as lo-
cal perturbations known as interface effects.[8-12] Dental 
fillings, metal plates, portacaths and pacemakers are just a 
few examples of high-density implants that may be found 
in the human body. The presence of a high density object 
in a radiation field causes significant perturbations to the 
resulting dose distribution, so, high density implants are a 
matter of concern in radiotherapy treatment planning.[13-15] 
For metallic interfaces encountered in prosthetic implants, 
dose increases of up to 50% which are measured in the 
backscatter direction within the range of electrons set in 
motion by 18 MV x-rays. At such higher energies, the tran-
sition zone extends over several centimeters and can affect 
a significant volume of adjoining tissue, with a potential for 
adverse clinically observed reactions.[16-21] In this work we 
investigated the effect of metal implant on absorbed dose 
of a homogenous phantom with and without the presence 
of stainless steel metal implants.

Methods
Thin sheets of stainless steel of thickness 1.0 mm, 1.5 mm 
and 2.0 mm obtained from Rail Stainless steel works, Ikeja, 
Nigeria were used in this study. They were reduced to three 
samples of 1.0 mm width and 9.0 mm height for each thick-
ness to serve as the metal implant. The entrance window in 
the phantom (Fig. 1) was made very thin, 1 mm and 0.7 cm 
radius from the centre of the ionization chamber. A calibrat-
ed FC65-G ionization chamber manufactured by IBA do-
simetry, Germany was used to measure the absorbed dose 
delivered by the Gamma beam X200 cobalt-60 machine 
and the machine was calibrated following the formalism 
recommended by the International Atomic Energy Agency 
(IAEA) in their technical report series 398.[22] The absorbed 

dose to water calibration factor, ND,W obtained for the ion-
ization chamber used is 48.21 mGy/nC. The absorbed dose 
to water was measured in solid water phantom arranged 
in dimension 30x30x10 cm at a reference depth of 5 cm, 
SSD=80 cm and field size 10x10 cm2 setting the irradiat-
ing time to 30 seconds. Three uncorrected electrometer 
readings were obtained and the temperature and pressure 
were obtained to be 25.7 0C and 987.4 hpa respectively. An 
average of three (3) measurements corrected for tempera-
ture and pressure were used for the final calculation of the 
absorbed dose. The absorbed dose at reference depth of 5 
cm was calculated as follows:

Dw (zref)=MxND,WxKT,P     (1)

Dw (zref) was obtained as 592.3 mGy, where corrected elec-
trometer reading, M=11.75 nC and correction factor for 
ionization chamber, KT,P=1.046. The absorbed dose rate to 
water at zref calculated was 19.74 mGy/sec.

Absorbed dose in homogenous phantom at predefined 
depth for set-up without implants and with implants are 
obtained and tabulated for different selected field sizes.

ND,W=48.21mGy/nC for the chamber  (2)

KT,P=(273.15+T)xPO     (3)

             (293.15xP)

where Po=1013.15 hpa, P is pressure and T is temperature 
reading obtained from Hopewell designed monitor that 
gives the standard environmental conditions for which the 
ion chamber's calibration factor applies.

Corrected reading, M=RxKT,P (nC/s)  (4)

where R is uncorrected electrometer reading and M is the 
corrected electrometer reading. 

Absorded dose=MxND,W (mGy)   (5)

A Farmer chamber type FC65-G ionization chamber was Figure 1. Solid water phantom.

Cable With Plastic Sleeve

Ionization Chamber

Metal Implant

Figure 2. The solid water phantom set-up with 60Co teletherapy facility 
at NIRPR, Ibadan.
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placed in a milled track or hole inside the solid water phan-
tom slabs of 30x30x1 cm and 30x30x2 cm behind the im-
plants.

The set up (Fig. 2) was irradiated for 30 seconds using a 
Gamma beam X 200 (GBX 200) Cobalt 60 unit at SSD of 
80 cm. A Dose 1 reference class electrometer produced by 
Wellhofer calibrated with the FC65-G ionization chamber 
was used to record the absorbed dose (mGy) of the setup 
for with implant and without implant, irradiated at field 
size 5x5 cm2 and 10x10 cm2. A depth of 1.7 cm, 2.7 cm, 3.7 
cm and 4.7 cm was used for each measurement for the set-
up with implant and without implant for 1 mm, 1.5 mm and 
2.0 mm thickness.

Results

The result of the absorbed dose (mGy) for 1 mm implant at 
5x5 cm2 field size and percentage deviation in solid water 
phantom for set-up with and without implants is presented 
in Table 1. The result of the absorbed dose (mGy) for 1.5 mm 
implant at 5x5 cm2 field size and percentage deviation in 
solid water phantom for set-up with and without implants 
is presented in Table 2. The result of the absorbed doses 
(mGy) for 2 mm implant at 5x5 cm2 field size and percent-
age deviation in solid water phantom for set-up with and 
without implants is presented in Table 3. The result of the 
absorbed doses (mGy) for 1 mm implant at 10x10 cm2 field 
size and percentage deviation in solid water phantom for 

set-up with and without implants is presented in Table 4. 
The result of the absorbed doses (mGy) for 1.5 mm implant 
at 10x10 cm2 field size and percentage deviation in solid 
water phantom for set-up with and without implants is pre-
sented in Table 5. The result of the absorbed dose (mGy) for 
2 mm implant at 10x10 cm2 field size and percentage devi-

Table 1. Measured absorbed dose and percentage deviation for 
homogeneous solid water phantom irradiated at 5x5 cm2 with 1 
mm thickness implant at various depths

                                   Measured Absorbed Dose (Mgy)
Depth (cm) Without Implant With 1 mm Implant %Dev

1.7 633.85 607.06 -4.2
2.7 588.57 561.83 -4.5
3.7 545.34 525.19 -3.7
4.7 501.23 483.18 -3.6
5.7 462.02 446.46 -3.4

Table 2. Measured absorbed dose and percentage deviation for 
homogeneous solid water phantom irradiated at 5x5 cm2 with 1.5 
mm thickness implant at various depths

                                     Measured Absorbed Dose (Mgy) 
Depth (cm) Without Implant With 1.5 mm Implant %Dev

1.7 633.85 598.35 -5.6
2.7 588.57 556.90 -5.4
3.7 545.34 524.99 -3.7
4.7 501.23 476.97 -4.8
5.7 462.02 444.14 -3.9

Table 3. Measured absorbed dose and percentage deviation for 
homogeneous solid water phantom irradiated at 5x5 cm2 with 2 
mm thickness implant at various depths

                                   Measured Absorbed Dose (Mgy) 
Depth (cm) Without Implant With 2 mm Implant %Dev

1.7 633.85 594.72 -6.2
2.7 588.57 557.01 -5.4
3.7 545.34 507.09 -7.0
4.7 501.23 475.95 -5.0
5.7 462.02 437.80 -5.2

Table 4. Measured absorbed dose and percentage deviation for 
homogeneous solid water phantom irradiated at 10x10 cm2 with 
1 mm thickness implant at various depths

                                   Measured Absorbed Dose (Mgy) 
Depth (cm) Without Implant With 1mm Implant %Dev

1.7 668.91 642.26 -4.0
2.7 627.69 599.84 -4.4
3.7 587.13 568.05 -3.2
4.7 546.98 527.38 -3.6
5.7 509.67 482.90 -5.3

Table 5. Measured absorbed dose and percentage deviation for 
homogeneous solid water phantom irradiated at 10x10 cm2 with 
1.5 mm thickness stainless steel implant at various depths

                                   Measured Absorbed Dose (Mgy) 
Depth (cm) Without Implant With 1.5 mm Implant %Dev

1.7 668.91 632.10 -5.5
2.7 627.69 594.41 -5.3
3.7 587.13 558.06 -5.0
4.7 546.98 521.54 -4.7
5.7 509.67 491.19 -3.6

Table 6. Measured absorbed dose and percentage deviation for 
homogeneous solid water phantom irradiated at 10x10 cm2 with 
2 mm thickness implant at various depths

                                   Measured Absorbed Dose (Mgy) 
Depth (cm) Without Implant With 2 mm Implant %Dev

1.7 668.91 628.76 -6.0
2.7 627.69 594.11 -5.3
3.7 587.13 558.06 -5.0
4.7 546.98 520.90 -4.8
5.7 509.67 485.02 -4.8
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ation in solid water phantom for set-up with and without 
implants is presented in Table 6.

Discussion
Comparison of absorbed doses measured for various 
depths at field size 5x5 cm2 for metal implant.
From Table 1, the deviation of the absorbed dose for the 
1 mm implant at depth of 1.7 cm from the measurement 
without implant was 4.2%, deviation at depth of 2.7 cm was 
4.5%, at 3.7 cm the deviation was 3.7%, at 4.7 cm the devia-
tion was 3.6%, and at 5.7 cm the deviation is 3.4%.

From Table 2, the deviation of the absorbed dose for the 
1.5 mm implant at depth of 1.7 cm from the measurement 
without implant was 5.6%, deviation at depth of 2.7 cm was 
5.4%, at 3.7 cm the deviation was 3.7%, at 4.7 cm the devia-
tion was 4.8%, and at 5.7 cm the deviation is 3.9%.

From Table 3, the deviation of the absorbed dose for the 
2 mm implant at depth of 1.7 cm from the measurement 
without implant was 6.2%, deviation at depth of 2.7 cm was 
5.4%, at 3.7 cm the deviation was 7.0%, at 4.7 cm the devia-
tion was 5.0 %, and at 5.7 cm the deviation was 5.2%.

Comparison of absorbed dose measured for various 
depths at field size 10x10 cm2 for metal implant.
From Table 4, the deviation of the absorbed dose for the 
1 mm implant at depth of 1.7 cm from the measurement 
without implant was 4.0%, deviation at depth of 2.7 cm was 
4.4%, at 3.7 cm the deviation was 3.2%, at 4.7 cm the devia-
tion was 3.6%, and at 5.7 cm the deviation was 5.3%.

From Table 5, the deviation of the absorbed dose for the 
1.5 mm implant at depth of 1.7 cm from the measurement 
without implant was 5.5%, deviation at depth of 2.7 cm was 
5.3%, at 3.7 cm the deviation was 5.0%, at 4.7 cm the devia-
tion was 4.7%, and at 5.7 cm the deviation was 3.6%.

From Table 6, the deviation of the absorbed dose for the 
2 mm implant at depth of 1.7 cm from the measurement 
without implant was 6.0%, deviation at depth of 2.7 cm was 
5.3%, at 3.7 cm the deviation was 5.0%, at 4.7 cm the devia-
tion was 4.8%, and at 5.7 cm the deviation was 4.8%.

Comparative analysis of absorbed dose for all thick-
nesses and field sizes.
Across the tables, deviations increased with increase in im-
plant thickness; this is as a result of increase attenuation 
caused by the implant materials. This was in accordance 
with Khan[23] who showed that there would be reduction in 
the number of photons when interacting with an absorber 
(metal) is proportional to the number of incidence photons 
and to the thickness of the absorber.

There was a higher variation in absorbed dose measured at 
higher depth (greater than 5 cm) with the 1 mm implant in 

10x10 cm2 field size as shown in Table 4. The absorbed dose 
measured decreases down the table; as the depth of the 
implant increases. Also, the absorbed dose measured for 1 
mm implant was within the recommended±5 % accuracy 
except at depth above 5 cm. However, for the 1.5 and 2 mm 
implant, deviations were higher for almost all depths.

Cheung et. al.,[24] observed dose deviation from 32 % to 68 
% close to the platinum implant for 4, 6, and 10 MV ener-
gies when using a 12.5 mm collimator. Comparatively higher 
dose deviation were observed when using smaller collima-
tors and it was suggested that field size and energy should 
be taken into account when planning radiation therapy 
treatment for patients with dental implants. This is in agree-
ment with part of our findings, because the measured ab-
sorbed dose increased with increase in field size as shown 
in Tables (1–6). Main et al.,[25] report showed that; an increase 
in dose fell off rapidly at the distance of 1–2 mm from the 
interface between solid bone and titanium implant, Mimu-
ra et. al.,[26] reported that palladium plate for dental disease 
resulted in maximum 150% change in dose at 5 mm behind 
the plate, and Tamada et. al.,[17] reported scattering on dose 
at 4 to 10 mm from stainless plates and reduction in dose 
with depth was compensated for using opposing portal ir-
radiation. These show that there are variations in absorbed 
dose with increasing depth as shown in our findings.

The uniqueness of this work was in the consideration of the 
effect of depth from the implant to the surface of irradia-
tion. It was shown in all the thicknesses of implant used that 
dose decreases with the increasing depths and are within 
the tolerance level in some cases especially with 1 mm im-
plant but depth should be taken into consideration when 
treating patients with metal implants especially when the 
thickness is greater than 1 mm in cobalt units.

Conclusion
A study on the dosimetric effect of metal implant on ab-
sorbed dose has been carried out. There was an increase in 
absorbed dose at larger field sizes. There was decrease in 
absorbed dose as the thickness and depth of the implant 
increases. These variations in absorbed dose are caused 
by the higher attenuation of the metal implant. Correction 
factor should be applied for stainless steel metal implants 
of thicknesses greater than 1 mm for all field sizes and if 
the insert is at a distance greater than 5 cm from patients’ 
surface. This correction is necessary to prevent under-dose 
of the patients with implants and for the optimization of 
radiotherapy when treating patients with metal implants.
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